Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers
نویسندگان
چکیده
A critical challenge in the fabrication of chalcogenide-glass infrared optical fibers is the need for first producing large volumes of highpurity glass – a formidable task, particularly in the case of multicomponent glasses. We describe here a procedure based on multimaterial coextrusion of a hybrid glass-polymer preform from which extended lengths of robust infrared fibers are readily drawn. Only ~2 g of glass is required to produce 46 m of step-index fiber with core diameters in the range 10 – 18 μm. This process enables rapid prototyping of a variety of glasses for applications in the delivery of quantum cascade laser light, spectroscopy, sensing, and astronomy. ©2014 Optical Society of America OCIS codes: (060.2290) Fiber optics and optical communications: Fiber materials; (060.2390) Fiber optics and optical communications: Fiber optics, infrared; (160.2290) Materials: Fiber materials. References and links 1. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003). 2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002). 3. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical Fiber,” Opt. Express 16(23), 18675–18683 (2008). 4. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012). 5. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2(4), 432–444 (2012). 6. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012). 7. G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” SPIE 9098, 90980V (2014). 8. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014). 9. B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003). 10. S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014). 11. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009). 12. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010). 13. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Midinfrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). 14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). 15. L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011). #217024 $15.00 USD Received 14 Jul 2014; revised 7 Sep 2014; accepted 7 Sep 2014; published 19 Sep 2014 (C) 2014 OSA 1 October 2014 | Vol. 4, No. 10 | DOI:10.1364/OME.4.002143 | OPTICAL MATERIALS EXPRESS 2143 16. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octavespanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012). 17. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014). 18. J. L. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2013). 19. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989). 20. M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE 8307, 83070N (2011). 21. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971). 22. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972). 23. W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989). 24. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007). 25. A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010). 26. A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998). 27. D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. NonCryst. Solids 256–257, 232–236 (1999). 28. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008). 29. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994). 30. D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004). 31. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005). 32. S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nano-tapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013). 33. http://www.amorphousmaterials.com/ 34. G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009). 35. J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of highdensity macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011). 36. C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992). 37. A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University, 2013).
منابع مشابه
Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers.
The development of robust infrared fibers is crucial for harnessing the capabilities of new mid-infrared lasers. We present a novel approach to the fabrication of chalcogenide glass fiber preforms: one-step multimaterial extrusion. The preform consists of a glass core and cladding surrounded by a built-in, thermally compatible, polymer jacket for mechanical support. Using this approach we extru...
متن کاملRobust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission.
We describe an approach for producing robust multimaterial chalcogenide glass fibers for mid-wave and long-wave mid-infrared transmission. By combining the traditional rod-in-tube process with multimaterial coextrusion, we prepare a hybrid glass-polymer preform that is drawn continuously into a robust step-index fiber with a built-in, thermally compatible polymer jacket. Using tellurium-based c...
متن کاملNonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation
Wepresent the results of an investigation of the nonlinear characteristics of a new class of robust,multimaterial, allsolid chalcogenide nanotapers prepared from high-index-contrast chalcogenide fibers. The fiber is drawn from a preform produced bymultimaterial coextrusion and consists of chalcogenide core and cladding (which dictate the optical properties) and a built-in thermally compatible p...
متن کاملRobust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process
Double-crucible cane fabrication of highly purified chalcogenide-glass was combined with multimaterial thermal fiber drawing to produce robust low-loss 0.2 NA chalcogenide fibers. Optical transmission losses were shown to be less than 1.1 dB/m at wavelengths of 1.5, 2.0 and 4.6 μm. Fiber transmission > 97% at the 1.5 μm design wavelength was demonstrated using single-layer anti-reflection coati...
متن کاملMultimaterial Fibers
Recent progress in combining multiple materials with disparate optical, electronic, and thermomechanical properties monolithically in the same fiber drawn from a preform is paving the way to a new generation of multimaterial fibers endowed with unique functionalities delivered at optical fiber length scales and costs. A wide range of unique devices have been developed to date in fiber form-fact...
متن کامل